Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis.

نویسندگان

  • Luisa Maria Lois
  • Christopher D Lima
  • Nam-Hai Chua
چکیده

Post-translational modification of proteins by small polypeptides, such as ubiquitin, has emerged as a common and important mechanism for regulating protein function. Small ubiquitin-like modifier (SUMO) is a small protein that is structurally related to but functionally different from ubiquitin. We report the identification and functional analysis of AtSUMO1, AtSUMO2, and AtSCE1a as components of the SUMO conjugation (sumoylation) pathway in Arabidopsis. In yeast-two hybrid assays, AtSUMO1/2 interacts specifically with a SUMO-conjugating enzyme but not with a ubiquitin-conjugating enzyme. AtSCE1a, the Arabidopsis SUMO-conjugating enzyme ortholog, conjugates SUMO to RanGAP in vitro. AtSUMO1/2 and AtSCE1a colocalize at the nucleus, and AtSUMO1/2 are conjugated to endogenous SUMO targets in vivo. Analysis of transgenic plants showed that overexpression of AtSUMO1/2 does not have any obvious effect in general plant development, but increased sumoylation levels attenuate abscisic acid (ABA)-mediated growth inhibition and amplify the induction of ABA- and stress-responsive genes such as RD29A. Reduction of AtSCE1a expression levels accentuates ABA-mediated growth inhibition. Our results suggest a role for SUMO in the modulation of the ABA signal transduction pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid.

Small ubiquitin-like modifier (SUMO) conjugation/deconjugation to heat shock transcription factors regulates DNA binding of the peptides and activation of heat shock protein gene expression that modulates thermal adaptation in metazoans. SIZ1 is a SUMO E3 ligase that facilitates SUMO conjugation to substrate target proteins (sumoylation) in Arabidopsis (Arabidopsis thaliana). siz1 T-DNA inserti...

متن کامل

Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling.

SUMO (small ubiquitin-related modifier) conjugation (i.e., sumoylation) to protein substrates is a reversible posttranslational modification that regulates signaling by modulating transcription factor activity. This paper presents evidence that the SUMO E3 ligase SIZ1 negatively regulates abscisic acid (ABA) signaling, which is dependent on the bZIP transcripton factor ABI5. Loss-of-function T-...

متن کامل

Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells.

Protein tyrosine (Tyr) phosphorylation plays a central role in many signaling pathways leading to cell growth and differentiation in animals. Tyr phosphorylated proteins have been detected in higher plants, and the roles of protein Tyr phosphatases and protein Tyr kinases in some physiological responses have been shown. We investigated the involvement of Tyr phosphorylation events in abscisic a...

متن کامل

An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling.

Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Ph...

متن کامل

SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana

The phytohormone abscisic acid (ABA) is an essential part of the plant response to abiotic stressors such as drought. Upon the perception of ABA, pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) proteins interact with co-receptor protein phosphatase type 2Cs to permit activation Snf1-related protein kinase2 (SnRK2) kinases, which switch on ABA signaling b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 2003